Abstract

Polyketide synthases (PKSs) usually employ a ketoreductase (KR) to catalyze the reduction of a β-keto group, followed by a dehydratase (DH) that drives the dehydration to form a double bond between the α- and β-carbon atoms. Herein, a DH*-KR* involved in FR901464 biosynthesis was characterized: DH* acts on glyceryl-S-acyl carrier protein (ACP) to yield ACP-linked pyruvate; subsequently KR* reduces α-ketone that yields L-lactyl-S-ACP as starter unit for polyketide biosynthesis. Genetic and biochemical evidence was found to support a similar pathway that is involved in the biosynthesis of lankacidins. These results not only identified new PKS domains acting on different substrates, but also provided additional options for engineering the PKS starter pathway or biocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.