Abstract
Experimental and numerical evidence is reviewed for the existence of a Stewartson layer in spherical Couette flow at small Ekman and Rossby numbers (E ≲ 10−3, Ro ≲ 10−2), the relevant hydrodynamic regime in the superfluid outer core of a neutron star. Numerical simulations of a superfluid Stewartson layer are presented for the first time, showing how the layer is disrupted by nonaxisymmetric instabilities. The unstable ranges of E and Ro are compared with estimates of these quantities in radio pulsars that exhibit glitches. It is found that glitching pulsars lie on the stable side of the instability boundary, allowing differential rotation to build up before a glitch.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.