Abstract

A UV Raman instrument holds great promise for future in-situ astrobiology investigations on Mars and elsewhere in the solar system due to its potential for high organic sensitivity, stand-off detection, and detection on unprepared samples. We characterize the fluorescence spectra of a range of organic compounds including amino acids, fatty acids, alkanes, and polycyclic aromatic hydrocarbons (PAHs) at three UV excitations to determine at what Raman excitation fluorescence is minimized. Both Raman and fluorescence measurements indicate that a Raman instrument operating with an excitation of 266nm will result in less fluorescence compared to an excitation of 355nm. Raman spectra of organic compounds at a 1% concentration in a silica sand matrix are obtained at an excitation wavelength of 266nm, and demonstrate either an absence of fluorescence or a reduction of fluorescence to a magnitude on the order of the Raman intensity, increasing the sensitivity of the instrument to organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.