Abstract

The intrauterine eggs of the pleurogenid trematode Brandesia turgida (Brandes, 1888), exhibiting advanced stages of miracidial differentiation and fully formed, ciliated miracidia, were examined by means of transmission electron microscopy (TEM). Each embryonated egg is composed of a mature miracidium surrounded by a four-layered egg wall: (1) an outer, anucleate layer external to the eggshell, which forms a thick cocoon; (2) the operculate egg-shell; (3) a small remnant of the compact, granular cytoplasm of the outer embryonic envelope (sensu stricto); and (4) a relatively distinct cellular remnant of the inner embryonic envelope. Layers enveloping the egg apparently play an important role in the protection, metabolism and storage of nutritive reserves for the developing miracidium. The outer, anucleate layer, or cocoon, situated externally to the eggshell and composed of a transparent, electron-lucent substance with numerous dense, osmiophilic islands attached to its peripheral membrane, has never previously been seen in TEM studies of the eggs of parasitic platyhelminths. The origin, formation, functional ultrastructure and chemical composition of this peculiar layer remain enigmatic, although its function appears to be protective. The thick, electron-dense eggshell resembles that of other trematodes, exhibiting a characteristic fissure zone around the operculum. The very small, indistinct remnants of the outer embryonic envelope appear in the form of a very thin, compact, granular cytoplasm closely attached to the inner surface of the eggshell. Conversely, the inner embryonic envelope is frequently apparent at one or both poles of the developed egg as a syncytial envelope formed by the fusion of mesomeres. This envelope, even in eggs containing a fully formed miracidium, still has the features of a metabolically active layer with an energy storage capability. Lysosome-like structures observed in some eggs may be involved in the autolysis of the embryonic envelopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.