Abstract

The development of ultrasonic tweezers with multiple manipulation functions is challenging. In this work, multiple advanced manipulation functions are implemented for a single-probe-type ultrasonic tweezer with the double-parabolic-reflector wave-guided high-power ultrasonic transducer (DPLUS). Due to strong high-frequency (1.49 MHz) linear vibration at the manipulation probe's tip, which is excited by the DPLUS, the ultrasonic tweezer can capture microobjects in a noncontact mode and transport them freely above the substrate. The captured microobjects that adhere to the probe's tip in the low-frequency (154.4 kHz) working mode can be released by tuning the working frequency. The results of the finite-element method analyses indicate that the manipulations are caused by the acoustic radiation force.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.