Abstract

Reactive oxygen species (ROS), produced during oxygen metabolism, participate in and regulate various life processes. It is of great significance to monitor ROS in biological organs to further study oxygen metabolism. Herein, an ultrasensitive sensing platform is developed with electrochemiluminescent (ECL) signalling by integrating bioactive magnetic beads (BMBs) on indium tin oxide (ITO) coated glass using a magnet. For the first time, AuNPs were successfully deposited on Fe3O4 NPs in situ by reduction of α-ketoglutaric acid (α-KG), therefore the electroactive protein, haemoglobin (Hb) or cytochrome C (Cyt C), was assembled on via covalent bonds. The protein can realize direct electron transfer (DET) and catalyse the redox of ROS, reaching a detection limit of 6.21 μM or 0.6 μM of H2O2. Also Au@Fe3O4 NPs efficiently enhanced the ECL of luminol, promoting the sensing ability for ROS. This simultaneous effect endows the platform with low LOD of ROS for 7.69 nM (Hb), or 1.97 nM (Cyt C). Finally, the feasibility and practicality of the sensing platform were verified by monitoring the ROS released from mouse myocardial tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.