Abstract

In the current research, we prepared a polymeric framework, {[Cu(C2O4)(C10H8N2)]·H2O·0.67(CH3OH)]}n (1) (where C2O4 = oxalic acid; C10H8N2 = 2,2-bipyridine), and explored this compound for adsorption of methylene blue (MB) and methyl orange (MO). The crystal structure of the compound consists of a Cu(ox)(bpy) unit connected via oxalate to form a 1D polymeric chain. This polymeric chain has adsorption capacities of 194.0 and 167.3 mg/g for MB and MO, respectively. The removal rate is estimated to be 77.6% and 66.9% for MB and MO, respectively. The plausible mechanisms for adsorption are electrostatic, π-π interaction, and OH-π interaction for dye stickiness. The adsorbent surface exhibits a negative charge that produces the electrostatic interaction, resulting in excellent adsorption efficiency at pH 7 and 8. The pseudo-first-order kinetic model is selected for the adsorption of MB and MO on the adsorbent. The reported compound has remarkable efficiency for sorption of organic dyes and can be useful in wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.