Abstract

AbstractNeodymium is critically scarce and is often used in supportable technologies such as permanent magnets, batteries, and catalysts. The extraction of it from virgin ores causes environmental degradation and recycling of end‐of‐life (EOL) products proves to be an alternative to meet its future criticality. From an environmental and economic point of view, magnets produced from recovered neodymium perform better than the ones produced from virgin neodymium. In this review various technologies such as hydro metallurgy, pyro metallurgy, supercritical CO2 extraction, desalination, and adsorption have been discussed for the recovery of this metal from different EOL sources. The advantages and limitations of these methods are summarized. Different experimental status like sources, temperature, aqueous phase composition, organic phase make up, and maximum recovery efficiency are also looked upon. This review may prove beneficial for the researchers to design recovery road maps under different circumstances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.