Abstract

Purpose The purpose of this paper is to review research studies on process optimisation and machine development that lead to the enhancement of final products in various aspects of the fused deposition modelling (FDM) process. Design/methodology/approach An overview of the literature, focussing on process parameters, machine developments and material characterisations. This study investigates recent research studies that studied FDM capabilities in printing a vast range of materials from thermoplastics to metal alloys. Findings FDM is one of the most common techniques in additive manufacturing (AM) processes. Many parameters in this technology have effects on three-dimensional printed products. Therefore, it is necessary to obtain the optimum elements, for example, build orientation, layer thickness, nozzle diameter, infill pattern and bed temperature. By selecting a proper variable range of parameters, the layers adhere strongly and building end-use products of high quality are achievable. A vast range of materials and their properties from polymers to composite-based polymers are presented. Novel techniques to print metal alloys and composites are examined to increase the productivity of the FDM process. Additionally, defects such as shrinkage and warpage are discussed to eliminate the system’s limitations and improve the quality of final products. Multi-axis and mobile machines brought enhancements throughout the process to eliminate obstacles such as staircase defects in the conventional FDM process. In brief, recent developments were identified and a summary of major improvements was discussed in this study for future research. Originality/value This paper is an overview that provides information about research and developments in FDM. This review focusses on process optimisation and obstacles in printing polymers, composites, geopolymers and novel materials. Therefore, machine characteristics were examined to find out the accessibility of printing novel materials for different applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.