Abstract
In this paper, mixed categorical structural optimization problems are investigated. The aim is to minimize the weight of a truss structure with respect to cross-section areas, materials, and cross-section type. The proposed methodology consists of using a bi-level decomposition involving two problems: master and slave. The master problem is formulated as a mixed-integer linear problem where the linear constraints are incrementally augmented using outer approximations of the slave problem solution. The slave problem addresses the continuous variables of the optimization problem. The proposed methodology is tested on three different structural optimization test cases with increasing complexity. The comparison to state-of-the-art algorithms emphasizes the efficiency of the proposed methodology in terms of the optimum quality, computation cost, as well as its scalability with respect to the problem dimension. A challenging 120-bar dome truss optimization problem with 90 categorical choices per bar is also tested. The obtained results showed that our method is able to solve efficiently large-scale mixed categorical structural optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.