Abstract

The direct construction of metal-free catalysts on conductive substrates for electrocatalytic organic hydrogenation reactions is significant but still unexplored. Here, learning from the homogeneous molecular catalysts, an organic molecular mimetic metal-free heterogeneous catalyst is designed and constructed in situ on a graphite flake electrode via a mild electrochemical oxidation-reduction relay strategy. The as-prepared -COOH- and -OH-functionalized metal-free catalyst exhibits an electrocatalytic alkyne semihydrogenation performance with a 72 % Faradaic efficiency, 99 % selectivity and 96 % yield of the alkene product, which is comparable to that of noble metal catalysts. The removal of these oxygen-containing groups leads to negligible activity. The experimental and calculation results reveal that the origin of the high activity can be assigned to the -COOH and -OH groups on graphite. A flow electrolytic cell delivers ten grams of hydrogenated products with 81 % Faradaic efficiency. This metal-free catalyst is also suitable for gas-phase acetylene semihydrogenation and other electrocatalytic hydrogenation reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.