Abstract
This paper deals with the suppression of the fluid forces by controlling a shear layer on one side separated from a square prism. The control of the separated shear layer was established by setting up a small circular cylinder (the control cylinder) in it on one side. Experimental data were collected to examine the effects on the fluid forces and vortex shedding frequency due to variation of the position and diameter of the control cylinder. The results show that (i) the maximum reduction of the time-mean drag and fluctuating lift and drag occurred when the control cylinder was located near what would ordinarily be considered the outer boundary of the shear layer; (ii) the control of the separated shear layer by means of a small cylinder appeared to be effective in suppressing the fluctuating lift and drag rather than the time-mean drag; (iii) in the case of the control cylinder of 6 mm in diameter, the time-mean drag was reduced to about 30 percent, and the fluctuating lift and drag were reduced to approximately 95 and 75 percent, respectively; (iv) the fluid forces and the frequency of vortex shedding of the square prism were mainly dependent on the characteristics of a very thin region near the outer boundary of the shear layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.