Abstract

Graphene-enhanced surface plasmon resonance (SPR) biosensors offer promising advancements in viral detection, particularly for SARS-CoV-2. This study presents the design and optimization of a multilayer SPR biosensor incorporating silver, silicon nitride, single-layer graphene, and thiol-tethered ssDNA to achieve high sensitivity and specificity. Key metrics, including SPR angle shift (Δθ), sensitivity (S), detection accuracy (DA), and figure of merit (FoM), were assessed across SARS-CoV-2 concentrations from 150 to 525 mM. The optimized biosensor achieved a sensitivity of 315.91°/RIU at 275 mM and a maximum Δθ of 4.2° at 400 mM, demonstrating strong responsiveness to virus binding. The sensor maintained optimal accuracy and figure of merit at lower concentrations, with a linear sensitivity response up to 400 mM, after which surface saturation limited further responsiveness. These results highlight the suitability of the optimized biosensor for real-time, point-of-care SARS-CoV-2 detection, particularly at low viral loads, supporting its potential in early diagnostics and epidemiological monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.