Abstract

We propose a mixed-integer nonlinear programming (MINLP) model for simultaneous chemical process and heat exchanger network synthesis. The model allows process stream inlet/outlet temperatures and flow rates to vary and can be extended to handle unclassified streams, thereby facilitating integration with a process synthesis model. The proposed model is based on a generalized transshipment approach in which the heat cascade is built upon a “dynamic” temperature grid. Both hot and cold streams can cascade heat so that exchanger inlet and outlet temperature, heat duty, and area can be calculated at each temperature interval. We develop mixed-integer constraints to model the number of heat exchangers in the network. Finally, we present several solution strategies tailored to improve the computation performance of the proposed models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.