Abstract
In this paper we analyze a mass transportation problem in a bounded domain in which there is the possibility of import/export mass across the boundary paying a tax in addition to the transport cost that is assumed to be given by the Euclidean distance. We show a general duality argument and for the dual problem we find a Kantorovich potential as the limit as p\to \infty of solutions to p -Laplacian type problems with nonlinear boundary conditions. In addition, we show that this limit encodes all the relevant information for our problem. It provides the masses that are exported and imported from the boundary and also allows the construction of an optimal transport plan. Finally we show that the arguments can be adapted to deal with the case in which the mass that can be exported/imported is bounded by prescribed functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.