Abstract

An optical spin micromotor operated by optical tweezers, described in the present study, converts radiant energy directly to mechanical energy. This conversion is of great practical and fundamental interest. The optical spin micromotor consists of a two-bead linkage. The large bead (2.0 μm in diameter) is trapped by the optical tweezers and rotates around the laser beam axis. The small bead (0.94 μm in diameter) is partially coated with gold/palladium for generating the spin torque through the change of momentum from gradient radiation pressure of the same laser applied on the coated small bead. With a laser power of 29 mW at the sample plane, the spin speed averaged 158.8±155.5 rpm (mean±standard deviation) and the torque was estimated as 101.9±99.8 pN nm. This optical spin micromotor will be useful in (1) providing a fundamental step toward developing optical-operated mechanical devices, (2) twisting macromolecules, and (3) generating vortex and shear force in medium at nanoscale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.