Abstract
We propose an opportunistic power control algorithm, which exploits channel fluctuation in order to maximize system throughput. The basic idea is that it instructs a transmitter to increase its power when the channel is good and to decrease its power when the channel is bad. The transmission rate is adjusted according to the received signal-to-interference ratio. The proposed algorithm is distributed and can be applied to systems in which the transmitters are connected to different receivers. We prove that the algorithm always converge to a unique fixed point and thus is stable. Simulation results show that a tremendous increase in system capacity can be achieved, when compared with other power control algorithms. Furthermore, the algorithm works well for nonreal-time terminals when other real-time terminals employ the target-tracking power control. It can also be extended to cases where maximum power constraint is imposed and soft handoff is executed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.