Abstract
Integrated underground utility tunnels are increasingly crucial in modern cities, addressing the pressing need for sustainable urban development. However, their extensive centralization amplifies both the complexity and scale of potential risks. When a utility tunnel accident occurs, it is possible to trigger a sequence of cascading events, thereby resulting a complex coupling accident. While previous research has predominantly focused on individual hazards, understanding multi-hazard coupling accidents presents significant challenges and lacks effective methodologies. In this paper, we propose an integrated system utilizing ontology technology and knowledge base construction for simulating and deducing coupling accidents in urban utility tunnels. Specifically, by extending ontology techniques to emergency decision-making and adopting the triangular framework for public safety, we establish a multidimensional information ontology for utility tunnel emergencies. Furthermore, a knowledge base for typical coupling accident evolution paths is established based on the event chain and contingency plan chain theory. Through integration with a multi-hazard accident basic database that serves the conditional, investigative and decision-making node within the evolution path, the simulation and deduction system is formulated, boasting a user-friendly visual interface, interactive functionality, and seamless applicability for widespread adoption. A case study demonstrates the system ability to support multiple paths and unified mapping deduction, offering practical emergency decision-making suggestions to mitigate cascading events in urban utility tunnels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.