Abstract
As the sister group to seed plants, ferns are a phylogenetically informative lineage. Functional studies in representatives of the fern lineage are helping bridge the knowledge gap in developmental mechanisms between angiosperms and non-vascular plants. The fern life cycle has the advantage of combining a sizable free-living haploid gametophyte, more amenable for developmental studies than the reduced seed plant gametophyte, with an indeterminate and complex diploid sporophyte. Ceratopteris richardii has long been proposed as a model fern and has recently become tractable due to stable transgenesis and increasing genomic resources, allowing researchers to test explicit questions about gene function in a fern for the first time. As with any model system, a detailed understanding of wild-type morphology and a staged ontogeny are indispensable for the characterization of mutant phenotypes resulting from genetic manipulations. Therefore, the goal of this study is to provide a unified reference ontogeny for this emerging model fern as a tool for comparative evolutionary and developmental studies. It complements earlier research by filling gaps in major stages of development of the haploid gametophyte and diploid sporophyte generations, and provides additional descriptions of the shoot apical meristem and early leaf development. This resource is meant to facilitate not only studies of candidate genes within C. richardii, but also broader ontogenetic comparisons to other model plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.