Abstract

The idea of multivariate and online stock price prediction via the kernel adaptive filtering (KAF) paradigm is proposed in this article. The prediction of stock prices is traditionally done with regression and classification, thereby requiring a large set of batch-oriented and independent training samples. This is problematic considering the nonstationary nature of a financial time series. In this research, we propose an online kernel adaptive filtering-based approach for stock price prediction to overcome this challenge. To examine a stock's performance and demonstrate the work's superiority, we use ten different KAF family of algorithms. In this paper, we take on this challenge and propose an approach for predicting stock prices. To analyze a stock's performance and demonstrate the work's superiority, we use ten distinct KAF algorithms. Besides, the results are analyzed on nine-time windows such as one day, sixty minutes, thirty minutes, twenty five minutes, twenty minutes, fifteen minutes, ten minutes, five minutes, and one minute. We are the first to experiment with several time windows for all fifty stocks on the Indian National Stock Exchange, to the best of our knowledge. It should be noted here that the experiments are performed on stocks making up the main index: Nifty-50. In terms of performance and compared to existing methods, we have a 66% probability of correctly predicting a stock's next upward or downward movement. This number clearly shows the edge that the proposed method has in actual deployment. Furthermore, the experimental findings show that KAF is not only a better option for predicting stock prices but that it may also be used as an alternative in high-frequency trading due to its low latency.

Highlights

  • Time-series prediction is prevalent in economics and investment research

  • We discovered that current research has overlooked kernel adaptive filtering (KAF) and has not thoroughly investigated this paradigm for financial time-series forecasting, especially stock prediction

  • With respect to the challenges and the ideas discussed we present an online KAF algorithms to predict the price of stock. e use of KAF techniques to stock price prediction is still limited [7, 14]

Read more

Summary

Introduction

Stock price prediction is one of the most popular applications of time-series prediction. It is a commonly held notion that stock markets are complex, volatile, and chaotic [2]. Previous studies [3] have shown that the prediction of stock prices, with the nonstationary and the nonlinear nature of the underlying asset, is challenging. In this regard, several models have been proposed, but the problem is nowhere near its end [4], and a substantial improvement is required. Studies have extended the problem by predicting option prices, volatility [5], and so on. Studies have extended the problem by predicting option prices, volatility [5], and so on. is significant body of work demonstrates that stock price prediction remains a significant issue requiring solutions to a wide range of problems

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.