Abstract
To meet the real-time path planning requirements of intelligent vehicles in dynamic traffic scenarios, a path planning and evaluation method is proposed in this paper. Firstly, based on the B-spline algorithm and four-stage lane-changing theory, an obstacle avoidance path planning algorithm framework is constructed. Then, to obtain the optimal real-time path, a comprehensive real-time path evaluation mechanism that includes path safety, smoothness, and comfort is established. Finally, to verify the proposed approach, co-simulation and real vehicle testing are conducted. In the dynamic obstacle avoidance scenario simulation, the lateral acceleration, yaw angle, yaw rate, and roll angle fluctuation ranges of the ego-vehicle are ±2.39 m/s2, ±13.31°, ±13.26°/s, and ±0.938°, respectively. The results show that the proposed algorithm can generate real-time, available obstacle avoidance paths. And the proposed evaluation mechanism can find the optimal path for the current scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.