Abstract
Visual perception critically depends on orientation-specific signals that arise early in visual processing. Humans show greater behavioral sensitivity to gratings with horizontal or vertical (0 degrees /90 degrees; 'cardinal') orientations than to other, 'oblique' orientations. Here we used functional magnetic resonance imaging (fMRI) to measure an asymmetry in the responses of human primary visual cortex (V1) to oriented stimuli. We found that neural responses in V1 were larger for cardinal stimuli than for oblique (45 degrees /135 degrees ) stimuli. Thus the fMRI pattern in V1 closely resembled subjects' behavioral judgments; responses in V1 were greater for those orientations that yielded better perceptual performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.