Abstract

The accurate extraction of rivers is closely related to agriculture, socio-economic, environment, and ecology. It helps us to pre-warn serious natural disasters such as floods, which leads to massive losses of life and property. With the development and popularization of remote-sensing and information technologies, a great number of river-extraction methods have been proposed. However, most of them are vulnerable to noise interference and perform inefficient in a big data environment. To address these problems, a river extraction method is proposed based on adaptive mutation particle swarm optimization (PSO) support vector machine (AMPSO-SVM). First, three features, the spectral information, normalized difference water index (NDWI), and spatial texture entropy, are considered in feature space construction. It makes the objects with the same spectrum more distinguishable, then the noise interference could be resisted effectively. Second, in order to address the problems of premature convergence and inefficient iteration, a mutation operator is introduced to the PSO algorithm. This processing makes transductive SVM obtain optimal parameters quickly and effectively. The experiments are conducted on GaoFen-1 multispectral remote-sensing images from Yellow River. The results show that the proposed method performs better than the existed ones, including PCA, KNN, basic SVM, and PSO-SVM, in terms of overall accuracy and the kappa coefficient. Besides, the proposed method achieves convergence rate faster than the PSO-SVM method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.