Abstract
This work deals with M/M/1 queue with Vacation and Vacation Interruption Under Bernoulli schedule. When there are no customers in the system, the server takes a classical vacation with probability p or a working vacation with probability 1-p, where . At the instants of service completion during the working vacation, either the server is supposed to interrupt the vacation and returns back to the non-vacation period with probability 1-q or the sever will carry on with the vacation with probability q. When the system is non empty after the end of vacation period, a new non vacation period begins. A matrix geometric approach is employed to obtain the stationary distribution for the mean queue length and the mean waiting time and their stochastic decomposition structures. Numerous graphical demonstrations are presented to show the effects of the system parameters on the performance measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.