Abstract

This paper considers an M/ G/1 queue in which service time distributions in each busy period change according to a finite state Markov chain, embedded at the arrival instants of customers. It is assumed that this Markov chain has an upper triangular transition matrix. Applying the regenerative cycle approach with respect to a busy period, we obtain the Laplace–Stieltjes transform, i.e., LST, of the stationary waiting time distribution in a certain parametric form. We give a procedure to determine those parameters. Some detailed calculations and numerical results are presented as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.