Abstract

We consider the maximization of weighted rate sum in Gaussian multiple-input-multiple-output broadcast channels. This problem is motivated by optimal adaptive resource allocation policies in wireless systems with multiple antenna at the base station. In fact, under random packet arrival and transmission queues, the system stability region is achieved by maximizing a weighted rate sum with suitable weights that depend on the queue buffer sizes. Our algorithm is a generalization of the well-known Iterative Multiuser Water-Filling that maximizes the rate sum under a total transmit power constraint and inherits from the latter its simplicity. We propose also a variation on the basic algorithm that makes convergence speed very fast and essentially independent of the number of users

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.