Abstract

The motivation for this paper is to solve a model based on the dynamics of electrons in a plasma using a simplified Boltzmann equation. Such problems have arisen in active plasma resonance spectroscopy, which is used for plasma diagnostic techniques; see Braithwaite and Franklin (2009) [1] . We propose a modified iterative splitting approach to solve the Boltzmann equations as a system of integro-differential equations. To enable solution by fast and iterative computations, we first transform the integro-differential equations into second order differential equations. Second, we split each second order differential equations into two first order differential equations via a splitting approach. We carry out an error analysis of the higher order iterative approach. Numerical experiments with a simplified Boltzmann equation will be discussed, along with the benefits of computing with this splitting approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.