Abstract

Ovality defect of round bloom castings is the haunting defect of demanding grades steel, which can be attributed to excessive mechanical stress imposed by the roll containment especially at the unbending region. A 2-D elastic-plastic FEM model has been developed for the quantitative analysis of the effects of hot strand pressures on the ovality deformation and the contact normal force distribution. It is shown that higher friction force and smaller reduction deformation can be expected through the adoption of grooved rolls for given hot strand pressures as compared with plain rolls. For the determination of whether the given hot strand pressures can meet the requirement of strand downslide control in the caster, the resistances generated in the mold, secondary cooling zone and unbending zone are analyzed. Accordingly, an iterative algorithm has been presented to modify the hot strand pressures for given caster. A set of modified hot strand pressures has been computationally determined, which has been proved to be safe in production for casting round bloom with diameter up to Φ400mm with better roundness and less roller mark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.