Abstract
We consider joint selection of fixed and random effects in general mixed-effects models. The interpretation of estimated mixed-effects models is challenging since changing the structure of one set of effects can lead to different choices of important covariates in the model. We propose a stepwise selection algorithm to perform simultaneous selection of the fixed and random effects. It is based on Bayesian Information criteria whose penalties are adapted to mixed-effects models. The proposed procedure performs model selection in both linear and nonlinear models. It should be used in the low-dimension setting where the number of ovariates and the number of random effects are moderate with respect to the total number of observations. The performance of the algorithm is assessed via a simulation study, which includes also a comparative study with alternatives when available in the literature. The use of the method is illustrated in the clinical study of an antibiotic agent kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.