Abstract

Affinity chromatography of an ammonium sulfate precipitate obtained from rat hepatic cytosol resulted in the separation of two fractions of N-acetyltransferase (NAT) activity. NAT I catalyzed the S-acetylcoenzyme A (AcCoA)-dependent acetylation of p-aminobenzoic acid (PABA); NAT II catalyzed the N-hydroxy-2-acetylaminonuorene (N-OH-AAF)-dependent acetylation of 4-aminoazobenzene (AAB) ( N, N-acetyltransferase), the AcCoA-dependent acetylation of procainamide (PA), and the N-arylhydroxamic acid N, O-acyltransferase (AHAT) activity that results in the conversion of N-OH-AAF and related hydroxamic acids to electrophilic reactants. 1-(Fluoren-2-yl)-2-propen-1-one (vinyl fluorenyl ketone, VFK) was shown to be a potent and irreversible inactivator of NAT II activities. A 200-fold higher concentration of VFK was required to inactivate NAT I activity than was required for inactivation of NAT II activities. Similar selectivity in the inactivation of the isozymes was observed when experiments were conducted with enzyme preparations that contained both NAT I and NAT II activities. The presence of substrates and products of the NAT II-catalyzed reactions such as AcCoA, 2-acetylaminofluorene (2-AAF), and N-acetyl-4-aminoazobenzene (N-Ac-AAB) protected NAT II from the inactivating effects of VFK, providing evidence that VFK is an active site directed inhibitor (affinity label) of NAT II. Studies with 1-(fluoren-2-yl)-2-propan-1-one (EFK), an analogue of VFK in which the α, β-unsaturated vinyl ketone group of VFK has been replaced with an ethyl ketone group, demonstrated that the conjugated ketone of VFK is required for inactivation of enzyme activity. The results of these studies suggest that agents such as VFK should have utility as probes of acetyltransferase multiplicity and in the investigation of the active site topography of the enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.