Abstract

We explore hierarchical refinement of NURBS as a basis for adaptive isogeometric and immersed boundary analysis. We use the principle of B-spline subdivision to derive a local refinement procedure, which combines full analysis suitability of the basis with straightforward implementation in tree data structures and simple generalization to higher dimensions. We test hierarchical refinement of NURBS for some elementary fluid and structural analysis problems in two and three dimensions and attain good results in all cases. Using the B-spline version of the finite cell method, we illustrate the potential of immersed boundary methods as a seamless isogeometric design-through-analysis procedure for complex engineering parts defined by T-spline CAD surfaces, specifically a ship propeller and an automobile wheel. We show that hierarchical refinement considerably increases the flexibility of this approach by adaptively resolving local features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.