Abstract
The GVW algorithm computes simultaneously Gröbner bases of a given ideal and of the syzygy module of the given generating set. In this work, we discuss an extension of it to involutive bases. Pommaret bases play here a special role in several respects. We distinguish between a fully involutive GVW algorithm which determines involutive bases for both the given ideal and the syzygy module and a semi-involutive version which computes for the syzygy module only an ordinary Gröbner basis. A prototype implementation of the developed algorithms in Maple is described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.