Abstract

Abstract Transient liquid phase bonding mechanism of two dissimilar alloys stainless steel 316L and Ti–6Al–4V using pure Cu interlayer with different thicknesses was studied. In order to characterize the microstructure and compositional changes in the joint zone, scanning electron microscopy equipped with energy dispersive spectroscopy and X-ray diffraction have been applied. Microhardness and shear strength tests have been performed to investigate mechanical properties of the joints. The results showed that there are various intermetallic compounds at the interface caused by interdiffusion of Ti, Fe and Cu across the joint zone. Furthermore, increasing the interlayer thickness led to incompletion of bonding process in 60 min. The maximum shear strength of 220 MPa has been attained for the bond made at 900 °C. With the rise in bonding temperature to 960 °C, a reduction in bond strength occurs attributed to increase in width of joint zone and formation of more brittle intermetallic compounds at the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.