Abstract

ABSTRACT Stokes flow produced by an oscillatory motion of a wall is analyzed in the presence of a non-Newtonian fluid. A total of eight non-Newtonian models are considered. A mass balance approach is introduced to solve the governing Equations. The velocity and temperature profiles for these models are obtained and compared to those of Newtonian fluids. For the power law model, correlations for the velocity distribution and the time required to reach the steady periodic flow are developed and discussed. Furthermore, the effects of the dimensionless parameters on the flow are studied. For the temperature distribution, an analytical solution for Newtonian fluid is developed as a comparative source. To simulate the rheological behavior of blood at unsteady state, three non-Newtonian constitutive relationships are used to study the wall shear stress. It is found that in the case of unsteady stokes flow, although the patterns of velocity and wall shear stress is consistent across all models, the magnitude is affected by the model utilized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.