Abstract

BackgroundA high proportion of staphylococci isolated from pigs affected with exudative epidermitis were found to be resistant to β-lactam antimicrobials. The primary objective of this research was to investigate and characterize β-lactam resistance in Staphylococcus hyicus, Staphylococcus aureus and other staphylococci isolated from these pigs.ResultsThe antimicrobial resistance patterns of 240 staphylococci isolates were determined by disk diffusion, of which 176 (73.3%) of the isolates were resistant to 3 β-lactams (penicillin G, ampicillin, and ceftiofur). The presence of mecA gene was identified in 63 staphylococci isolates from skin samples by PCR. The mecA gene was identified in 19 S. aureus, 31 S. hyicus, 9 Staphylococcus chromogenes, 2 Staphylococcus pseudintermedius isolates, and in 1 isolate each of Staphylococcus arlettae, and Staphylococcus cohnii subspecies urealyticus. From SCCmec typing results, the majority (45/63, 71.4%) were shown to be SCCmec type V. One isolate was SCCmec III. Fourteen isolates were detected as mec class A, mec class C or ccr type 5. The ccr complex and mec complex was not detected in 3 isolates of methicillin resistant S. hyicus (MRSH) based on multiplex PCR. Of the 30 isolates of MRSA identified from nasal samples of the pigs, 29 isolates were SCCmec type V and 1 isolate was SCCmec type II. Staphyloccoci isolates that were mecA negative but resistant to β-lactam antimicrobials were further examined by screening for mecC, however all were negative. Furthermore, the majority of mecA negative β-lactam resistant staphylococci isolates were susceptible to oxacillin and amoxicillin-clavulanic acid in a double disk diffusion test.ConclusionsMethicillin resistance can be identified in a variety of staphylococcal species isolated from pigs. In this study there was a great deal of similarity in the SCCmec types between staphylococcal species, suggesting that resistance may be passed from one species of staphylococci to another species of staphylococci. While this has been reported for acquisition of methicillin-resistance from coagulase negative staphylococci to S. aureus, these data suggest that transmission to or from the porcine pathogen S. hyicus may also occur. The identification of methicillin resistance in a variety of staphylococcal species in pigs does raise concerns about the spread of serious multi-drug resistance in food producing animals and warrants further study.

Highlights

  • A high proportion of staphylococci isolated from pigs affected with exudative epidermitis were found to be resistant to β-lactam antimicrobials

  • One hundred forty-four presumed S. hyicus and 96 S. aureus isolates from skin swabs were further tested

  • Thirty-one (70.5%) of the presumptive S. hyicus isolates were reconfirmed as S. hyicus (MRSH), 9 were methicillinresistant S. chromogenes (MRSC), 2 were methicillinresistant S. pseudintermedius (MRSP) and one each of S. arlettae and S. cohnii subsp. urealyticus

Read more

Summary

Introduction

A high proportion of staphylococci isolated from pigs affected with exudative epidermitis were found to be resistant to β-lactam antimicrobials. Resistance to β-lactam antimicrobials among staphylococci isolated from pigs is common [2,3,4,5], important disease such as exudative epidermitis [10,11]. Acquired resistance to β-lactams is mediated through two main mechanisms, β-lactamase production or altered penicillin binding protein (PBP2a) production. Bacterial β-lactamases hydrolyze the β-lactam ring and in staphylococci typically confer resistance to penicillins (including amoxicillin and ampicillin). Altered PBP2a production encoded by mecA, results in low affinity for all β-lactams and confers broad resistance to β-lactams (including cephalosporins and carbapenems) that is not affected by β-lactamase inhibitors

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.