Abstract

With the aid of indentation experiments, the micro-mechanical properties of the matrix of SiC particle-reinforced Aluminum composite were investigated with the load ranging from 80 to 480 mN and the loading speed ranging from 1.94 to 12.91 mN/s at room temperature. The results exhibited that under different loading conditions, the Young’s modulus decreased along with the increasing load due to the damage accumulation. As to micro hardness, it reduced with the increasing load, the indentation depth (i.e., indentation size effect), and the decreasing loading speed. Independent of the loading speed, the micro-hardness was not only related to the material elastic property, but also to plastic property with \(h_{\text{m}} /h_{\text{c}}\) and indenter geometry. The characteristic length was also associated with \(h_{\text{m}} /h_{\text{c}}\). The deduced effective strain rates reduced with the increasing load and the decreasing loading speed. According to the experiment results, the energy dissipation maps and the elastic strain map were constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.