Abstract

There is limited understanding of the differences in lower extremity energy dissipation strategies between single-leg and double-leg landing maneuvers. This study sought to investigate these differences in sagittal and frontal planes, and explain the differences using kinematics and kinetics. We hypothesized that single-leg and double-leg landing maneuvers involve different lower extremity energy dissipation strategies in both planes. Ten recreational athletes were recruited and instructed to perform double-leg and single-leg landing from 0.60-m height. Force-plates and motion-capture system were used to obtain kinetics and kinematics data respectively. Joint power was taken as product of joint moment and angular velocity. Joint work was computed as integral of joint power over time, whereby negative work represented energy dissipation. In the sagittal plane, the hip and knee showed major contributions to energy dissipation during double-leg landing; the hip and ankle were the dominant energy dissipaters during single-leg landing. In the frontal plane, the hip acted as the key energy dissipater during double-leg landing; the knee contributed the most energy dissipation during single-leg landing. The knee also exhibited greater frontal plane joint ROM, moment and energy dissipation during single-leg landing than double-leg landing. Our findings indicated that different energy dissipation strategies were adopted for double-leg and single-leg landing in sagittal and frontal planes. Considering the prominent frontal plane biomechanics exhibited by the knee during single-leg landing, we expect that this maneuver may have greater likelihood of leading to traumatic knee injuries, particularly non-contact ACL injuries, compared to the double-leg landing maneuver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.