Abstract

Five metals with large work functions including Co, Ni, Cr, Ti, and Mo and two silicides including MnSi and TiSi2 were examined to determine the best contact material for the thermoelectric material higher manganese silicide (HMS). Three-layer structures of HMS/contact/HMS were prepared in a sintering process. The contact resistance was measured versus temperature. The structures were subjected to x-ray diffraction and energy-dispersive x-ray spectroscopy examination. Thermal stability of the structures was determined by heating the samples to 700°C for different time intervals. The pure metals failed to make reliable contacts due to poor mechanical and chemical stability at high temperatures. In contrast, the metal silicides (MnSi and TiSi2) showed superior chemical and mechanical stability after the thermal stability test. The observed contact resistance of MnSi and TiSi2 was within the range of practical interest (10−5 Ω cm2 to 10−4 Ω cm2) over the entire range of investigated temperatures (20°C to 700°C). The best properties were found for the nanograined MnSi, for which the resistance of the contact was as low as 10−6 Ω cm2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.