Abstract
A critical issue in software project management is the accurate estimation of size, effort, resources, cost, and time spent in the development process. Underestimates may lead to time pressures that may compromise full functional development and the software testing process. Likewise, overestimates can result in noncompetitive budgets. In this paper, artificial neural network and stepwise regression based predictive models are investigated, aiming at offering alternative methods for those who do not believe in estimation models. The results presented in this paper compare the performance of both methods and indicate that these techniques are competitive with the APF, SLIM, and COCOMO methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.