Abstract

Traditional chemotherapeutic drugs remain the major treatment for advanced colorectal cancer. However, due to the lack of tumor specificity these drug also destroy healthy tissue and organs, which has been the main reason for treatment failure and mortality. Folate-based drug delivery systems for improving nanoparticle endocytosis have been used to address these problems. Here, folic acid (FA) conjugated mPEG-b-P(CABCL-co-ACL) diblock copolymers were synthesized and characterized by TEM and NMR. Drug loaded nanoparticles were prepared using dialysis method and was obtained with a mean diameter of 45.2nm with sustained invitro release profile. Invitro cytotoxicity assay indicated that the cytotoxicity of folate modified nanoparticles were significantly increased compared to free drug and non-folate nanoparticles. In addition, results of hemolytic and histopathologic study suggested that the non-loaded nanoparticle (NL/NP) was non-toxic and biocompatible at the testing concentration. Moreover, invivo results showed that FA/5-FU/NP effectively inhibited growth of HCT-8 cell-based xenograft tumors in BALB/c mice and revealed stronger antitumor efficacy than other treated groups. Thus, both invitro and invivo results exhibited that the folate conjugated mPEG-b-P(CABCL-co-ACL) copolymers have great potential to be used as sustainable and specific colon cancer targeting delivery system for anticancer agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.