Abstract

D-Penicillamine is a potent copper (Cu) chelating agent. D-Pen reduces Cu(II) to Cu(I) in the process of chelation while at the same time being oxidized to D-penicillamine disulfide. It has been proposed that hydrogen peroxide is generated during this process. However, definitive experimental proof that hydrogen peroxide is generated remains lacking. Thus, the major aims of these studies were to confirm and quantitatively assess the in vitro production of hydrogen peroxide during copper catalyzed D-penicillamine oxidation. The potential cytotoxic effect of hydrogen peroxide generation was also investigated in vitro against MCF-7 human breast cancer cells. Cell cytotoxicity resulting from the incubation of D-penicillamine with copper was compared to that of D-penicillamine, copper and hydrogen peroxide. The mechanism of copper catalyzed D-penicillamine oxidation and simultaneous hydrogen peroxide production was investigated as a function of time, concentration of cupric sulfate or ferric chloride, temperature, pH, anaerobic condition and chelators such as ethylenediaminetetraacetic acid and bathocuproinedisulfonic acid. A simple, sensitive and rapid HPLC assay was developed to simultaneously detect D-penicillamine, its major oxidation product D-penicillamine disulfide, and hydrogen peroxide in a single run. Hydrogen peroxide was shown to be generated in a concentration dependent manner as a result of D-penicillamine oxidation in the presence of cupric sulfate. Chelators such as ethylenediaminetetraacetic acid and bathocuproinedisulfonic acid were able to inhibit D-penicillamine oxidation. The incubation of MCF-7 human breast cancer cells with D-penicillamine plus cupric sulfate resulted in the production of reactive oxygen species within the cell and cytotoxicity that was comparable to free hydrogen peroxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.