Abstract

The loops in proteins are less well characterized than the secondary structural elements that they connect. We have used the four-helix-bundle protein Rop as a model system in which to explore the role of loop length in protein folding and stability. A natural two-residue loop was replaced with a series of glycine linkers up to 10 residues in length. All 10 mutants are highly helical dimers that retain wild-type RNA-binding activity. As loop length is increased, the stability of Rop toward thermal and chemical denaturation is progressively decreased. All the mutants assume a wild-type-like structure, which suggests that the natural loop does not actively dictate the final protein fold. The strong inverse correlation observed between loop length and stability is well described by a simple polymer model in which the entropy of loop closure is the dominant energetic term. Our results emphasize the importance of optimization of loop length to successful protein design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.