Abstract

An inventory model for a deteriorating item (seasonal product) with linearly displayed stock dependent demand is developed in imprecise environment (involving both fuzzy and random parameters) under inflation and time value of money. It is assumed that time horizon, i.e., period of business is random and follows exponential distribution with a known mean. The resultant effect of inflation and time value of money is assumed as fuzzy in nature. The particular case, when resultant effect of inflation and time value is crisp in nature, is also analyzed. A genetic algorithm (GA) is developed with roulette wheel selection, arithmetic crossover, random mutation. For crisp inflation effect, the total expected profit for the planning horizon is maximized using the above GA to derive optimal inventory decision. On the other hand when inflationary effect is fuzzy then the above expected profit is fuzzy in nature too. Since optimization of fuzzy objective is not well defined, the optimistic/pessimistic return of the expected profit is obtained using possibility/necessity measure of fuzzy event. Fuzzy simulation process is proposed to determine this optimistic/pessimistic return. Finally a fuzzy simulation based GA is developed and is used to maximize the above optimistic/pessimistic return to get optimal decision. The models are illustrated with some numerical examples and some sensitivity analyses have been presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.