Abstract

Hyperdimensional computing combines very high-dimensional vector spaces (e.g. 10,000 dimensional) with a set of carefully designed operators to perform symbolic computations with large numerical vectors. The goal is to exploit their representational power and noise robustness for a broad range of computational tasks. Although there are surprising and impressive results in the literature, the application to practical problems in the area of robotics is so far very limited. In this work, we aim at providing an easy to access introduction to the underlying mathematical concepts and describe the existing computational implementations in form of vector symbolic architectures (VSAs). This is accompanied by references to existing applications of VSAs in the literature. To bridge the gap to practical applications, we describe and experimentally demonstrate the application of VSAs to three different robotic tasks: viewpoint invariant object recognition, place recognition and learning of simple reactive behaviors. The paper closes with a discussion of current limitations and open questions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.