Abstract

The performance of complex systems is closely related to its safety and reliability. Grasping the performance of complex systems accurately and timely can help avoid or reduce losses if performance drops. In engineering practice, the monitoring information in interval form can express uncertainty. The upper and lower bounds of monitoring information are easier to obtain than the probability distribution, which can reduce the requirements for information distribution. In this paper, the interval evidential reasoning approach is used to evaluate performance of complex systems. A Monte Carlo simulation-based method for calculating the reliability and weight of evidence is proposed. The initial performance evaluation results are obtained by constructing a nonlinear optimization model. Then the historical performance evaluation information is fully considered to obtain the optimal evaluation results dynamically using a linear weighted update method. An uncertainty quantification method is proposed to quantify the uncertainty of input information and evaluation results. Finally, a case study is carried out for a kind of diesel generator to validate the applicability of the proposed method, and shows that the proposed method can improve the evaluation accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.