Abstract

Abstract In a 1984–85 winter cloud-seeding program at Lake Almanor, California, indium sesquioxide (In2O3) aerosol particle generators were collocated with silver iodide (AgI) aerosol particle generators as a source of inert tracer aerosol. The In2O3 aerosol served as an indicator of the amount of AgI aerosol scavenged. Based on the aerosol emission rates, if AgI aerosol was only captured by scavenging processes, and played no part in forming ice crystals and snowfall, the silver to indium ratio (Ag:In) in the analyzed snow would be 0.8. Analysis of snow samples from the target area produced frequent Ag:In ratio values in excess of 1.1. In the snowfall at the closest sampling sites to the aerosol generator the high ratios of Ag:In cannot be explained by the contact-freezing ice formation mechanism. A mechanism with a much faster rate than possible by contact freezing is necessary to produce the high Ag:In ratios that were observed. Part of the AgI seeding aerosol functioned rapidly to produce ice crystals...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.