Abstract

626 Background: The 2019 Kidney and Kidney Tumor Segmentation challenge (KiTS19) was an international competition held in conjunction with the 2019 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) and sought to stimulate progress on this automatic segmentation frontier. Growing rates of kidney tumor incidence led to research into the use of artificial inteligence (AI) to radiographically differentiate and objectively characterize these tumors. Automated segmentation using AI objectively quantifies complexity and aggression of renal tumors to better differentiate and describe the tumors for improved treatment decision making. Methods: A training set of over 31,000 CT images from 210 patients with kidney tumors was publicly released with corresponding semantic segmentation masks. 106 teams from five continents used this data to develop automated deep learning systems to predict the true segmentation masks on a test set of an additional 13,500 CT images in 90 patients for which the corresponding ground truth segmentations were kept private. These predictions were scored and ranked according to their average Sørensen-Dice coefficient between kidney and tumor across the 90 test cases. Results: The winning team achieved a Dice of 0.974 for kidney and 0.851 for tumor, approaching the human inter-annotator performance on kidney (0.983) but falling short on tumor (0.923). This challenge has now entered an “open leaderboard” phase where it serves as a challenging benchmark in 3D semantic segmentation. Conclusions: Results of the KiTS19 challenge show deep learning methods are fully capable of reliable segmentation of kidneys and kidney tumors. The KiTS19 challenge attracted a high number of submissions and serves as an important and challenging benchmark in 3D segmentation. The publicly available data will further propel the use of automated 3D segmentation analysis. Fully segmented kidneys and tumors allow for automated calculation of all types of nephrometry, tumor textural variation and discovery of new predictive features important for personalized medicine and accurate prediction of patient relevant outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.