Abstract

If an analog-to-digital converter (ADC) is used within a ΣΔ converter such that the loop filter is mixed signal, then the ADC does not need to have the full resolution of the ΣΔ converter, and its input values will not be uniformly distributed over the input range. In this paper, we argue that the best input distribution to use as a general model is the maximum-entropy distribution (for location parameters: the Gaussian distribution). We then describe an externally linear ADC with non-linearly spaced decision boundaries implemented in 0.6μm CMOS and show measurement results of a 19-bit dynamic range ΣΔ accelerometer loop inside which the ADC reaches more than the required 7-bit performance with only 2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sup> decision levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.