Abstract

Poxviruses have evolved various strategies to counteract the host immune response, one of which is based on the expression of soluble cytokine receptors. Using various biological assays, we detected a chicken interferon-gamma (chIFN-gamma)-neutralizing activity in supernatants of fowlpox virus (FPV)-infected cells that could be destroyed by trypsin treatment. Secreted viral proteins were purified by affinity chromatography using matrix-immobilized chIFN-gamma, followed by two-dimensional gel electrophoresis. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analysis indicated that the viral IFN-gamma-binding protein in question was encoded by the FPV gene 016. The chicken IFN-gamma binding and neutralizing activity of the recombinant FPV016 protein was confirmed using supernatants of cells infected with a recombinant vaccinia virus that lacked its own IFN-gamma-binding protein but instead expressed the FPV016 gene. The FPV016 gene product also neutralized the activity of duck and human IFN-gamma but failed to neutralize the activity of mouse and rat IFN-gamma. Unlike previously known cellular and poxviral IFN-gamma receptors, which all contain fibronectin type III domains, the IFN-gamma-binding protein of FPV contains an immunoglobulin domain. Remarkably, it exhibits no significant homology to any known viral or cellular protein. Because IFN-gamma receptors of birds have not yet been characterized at the molecular level, the possibility remains that FPV016 represents a hijacked chicken gene and that avian and mammalian IFN-gamma receptors have fundamentally different primary structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.