Abstract
We consider a general relativistic fermion antifermion pair that they interact via an attractive Coulomb type interparticle interaction potential in the 2+1 dimensional spacetime background spanned by cosmic string. By performing an exact solution of the corresponding fully-covariant two body Dirac Coulomb type equation we obtain an energy spectrum that depends on angular deficit parameter of the static cosmic string spacetime background for such a composite system. We arrive that the influence of cosmic string spacetime topology on the binding energy of Positronium-like atoms can be seen in all order of the coupling strength constant, even in the well-known non-relativistic binding energy term (∝αc2). We obtain that the angular deficit of the static cosmic string spacetime background causes a screening effect. For a predicted value of angular deficit parameter, α∼1−10−6, we apply the obtained result to an ortho-positronium, which is an unstable atom formed by an electron and its antimatter counterpart a positron, and then we determine the shift in the ground state binding energy level as 27,2μeV. We also arrive that, in principle, the shift in ground state binding energy of ortho-positronium can be measured even for α∼1−10−11 value with current techniques in use today. Moreover, this also gives us an opportunity to determine the altered total annihilation energy transmitted by the annihilation photons. The yields also impose that the total lifetime of an ortho-positronium can be changed by the topological feature of static cosmic string spacetime background. In principle, we show that an ortho-positronium system has a potential to prove the existence of such a spacetime background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.